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Abstract—Detecting the core structure of a database is one
of the most objective of data mining. Many methods do so,
in pattern set mining, by mining a small set of patterns that
together summarize the dataset in efficient way. The better of
these patterns, the more effective summarization of the database.
Most of these methods are based on the Minimum Description
Length principle. Here, we focus on the event sequence database.
In this paper, rather than mining a small set of significant
patterns, we propose a novel method to summarize the event
sequence dataset by constructing compact big sequence namely,
BigSeq. BigSeq conserves all characteristics of the original event
sequences. It is constructed in efficient way via the longest
common subsequence and the novel definition of the compatible
event set. The experimental results show that BigSeq method
outperforms the state-of-the-art methods such as Gokrimp with
respect to compression ratio, total response time, and number of
detected patterns.
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imum description length

I. INTRODUCTION

Detecting the key patterns from a database is one of
the main objectives of data mining. There are many studies
for mining all patterns that satisfy some constraints (such
patterns may be frequent patterns as in PrefixSpan [11], CM-
SPADE [19], PRISM [15], and [20], or closed patterns as
in [24][7][14][2], or maximal patterns as in [3][23]). Rather
than mining all patterns, existing methods mining a set of
patterns that is significat for summarizing the dataset. There are
many methods to define this significant patterns. One of these
methods is the Minimum Description Length (MDL) principle
[21][12][6][22] which has proven to be particularly the winner
one.It is based on the insight that any regularity in the dataset
can be used to compress the dataset. Note that, the more we
can compress, the more regularity we have found. More details
about MDL are described in next section.

For itemsets data, Krimp [13] is based on MDL principle.
For sequence data, the authors of SeqKrimp [8][9], Gokrimp
[8][9], and SQS [18] used MDL principle to compress the se-
quence data. More details about these algorithms are illustrated
in the related work section (Section III).

In this paper, we focus on the event sequence data. Our
objective is to search for a summary of the given event
data sequences. The size of this summary must be very
small compared to the size of the event sequence dataset.
Also this summary must converse the all characteristics of
the original event sequences. The existing methods mine a
significant patterns that compress the dataset well. Some of
these methods generate the sequential patterns as a first phase.
Then the significant patterns are selected with respect to MDL

as a second phase. Note that the significant patterns is only a
small subset of the set of all the sequential patterns and the
process of mining all sequential patterns is very expensive
process. Therefore, the other existing methods devise some
effective pruning methods to prune the ineffective parts of
the search space that do not contain any significant pattern.
Unfortunately, the process of the pruning the ineffective parts
of the search space consumes more time if it not used efficient
techniques.

Contribution. From above, all existing methods apply
the mining process to search for the significant patterns. In
contrast, our proposed method donot apply the mining process.
Instead of, all event sequences in the dataset are merged into
only one compact big sequence. In other words, our proposed
method detects only one significant pattern which is the
compact big sequence. Note that, the detected big sequence
must be compact as much as possible. Therefore, we introduce
an efficient method for constructing the big sequence to reduce
the size of big sequence as much as possible. The construction
method is based on the longest common subsequence and
the novel definition of the compatible event set. Our compact
big sequence converses the all characteristics of the original
event sequences via preserving the order of events as in
the dataset and also associating with each event in the big
sequence a list of sequence ids that contains this event. To
confine the larger size of the lists of sequence ids, we can
represent them as sets of bit-vectors. Here, the consecutive
zeros in the sets of bits-vector are compressed in efficient way.

Organization. This paper is organized as follows. Section
II defines the preliminary concepts. Section III presents the
related work. Section IV presents our proposed algorithm.
Section VI reports the experimental results. Finally, Section
VII concludes the paper.

II. PRELIMINARY CONCEPTS

Let E = {e1, e2, ..., em} be a set of m distinct events.
Event sequence S =< u1, u2, ..., ul > over E is ordered list
such that ui ∈ E. Event sequence W = {w1, w2, ..., wh} is
subsequence of the event sequence S if there are h integers
(j1, j2, ..., jh) such that 1 ≤ j1 < j2 < ... < jh ≤ l and
w1 = sj1 , w2 = sj2 ,... ,wh = sjh . Event sequence with
length l is called an l-sequence. Event sequence database D
= {S1, S2, ..., Sn} is a set of event sequences where |D| =
n. For example, consider Table I which contains an example
of event sequence database D with |D| = 8. The sequence
S5 = ABCB is subsequence of the sequence S1 = ABCBC
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(S5 ⊑ S1). Also we can said S1 is supersequence of S5.

TABLE I. EVENT SEQUENCE DATABASE, D

Sid Sequence
S1 ABCBC
S2 ABAA
S3 CABAC
S4 CAC
S5 ABCB
S6 CBAC
S7 BCAB
S8 ACBBA

Definition 2.1: Longest Common Subsequence.
Given two event sequences X and Y , the longest common
subsequence between X and Y denoted as lcs(X,Y ) is a
longest sequence Z that is a subsequence of both X and Y .

Problem Definition: Given event sequence database D, the
objective is to find a summary, S of D such that S conserves
all characteristics of D and the size of S is sharply less than
the size of D. (|S| << |D|).

III. RELATED WORK

In the beginning, we discuss the minimum description
length in details as follows.

The Minimum Description Length

The minimum description length (MDL) principle
[21][12][6][22] widely used in text compression. It used as a
method for selecting a set of compressive patterns. If these
patterns are used as a dictionary then we have {the potential}
to maximally compress the dataset into a compact pattern
encoding. In other words, these patterns represent the dataset
in efficient way. Unfortunately, the process of selecting such
patterns that based on MDL is NP-hard problem. Given a
set of models M, the MDL principle states that the winner
model M ∈ M for the dataset D is the best model that
provides the lossless compression. Formally, we optimize
Len(D,M) = Len(M) + Len(D \ M) where Len(M) is
the length in bits of the description of M and Len(D \ M)
is the length in bits of the dataset when compressed with
model M . MDL was applied to detect compressed frequent
patterns from itemsets and sequences data. In next sections,
we discuss the algorithms that based on MDL.

For itemsets data, there is algorithm called Krimp [13]
that based on MDL principle. This algorithm is effective in
solving the redundancy issue in the descriptive pattern mining.
For sequence data, the authors of SeqKrimp [8][9] used MDL
principle to compress the sequence data. This algorithm
contains two steps. The first step generates the sequential
patterns as candidates by using existing sequence mining
method. The second step greedily checks the candidate
set to find the useful patterns which together minimizes
the description length. The SeqKrimp algorithm has two
main disadvantages which are the process of generating the

candidates is expensive and the patterns that do not belong to
candidate set have no chance to be selected even if they have
ability to minimizes the description length.

The authors of Gokrimp [8][9] mine a set of non-
redundant sequential patterns that compress the sequence
data using the MDL principle. GoKrimp do not generate
candidates as in SeqKrimp. Instead of, it directly mines
compressed useful patterns by greedily extending a pattern
until no additional compression benefit added. To taming
the hardness of the checks for additional compression
benefit of an extension, Gokrimp proposed a dependency test
which only selects related events for extending a given pattern.

As in GoKrimp, SQS [18] also directly mines the com-
pressed patterns from the sequence dataset. The patterns are
constructed iteratively. In each iteration, the pattern is selected
if it achieves the largest MDL gain among the possible
patterns. Note that, each iteration requires at least one scan
of the sequence dataset.

IV. PROPOSED ALGORITHM

The method is based on the observation that the most
event sequences in real dataset share the same subsequences.
To avoid the overhead of duplicated computations, we propose
big sequence method that merges all event sequences in the
dataset into one big sequence abbreviated as BigSeq. The
construction method of BigSeq is one of main operations in
our algorithm. BigSeq must be compact and efficient. At the
same time, it must conserve all characteristics of the original
dataset.

To construct compact BigSeq, we should propose an
efficient method to reduce the size of BigSeq as much as
possible. Thus, we will propose a new efficient method
to construct BigSeq. Next we discuss the steps of the
construction method on the sequence dataset of Table I.

First, we select any sequence S in the sequence database,
D (see Table I) as initial value of BigSeq. Suppose we
selected the first sequence S1 ∈ D. Then the BigSeq is
ABCBC. As we will see, some events will be inserted into
the current BigSeq to generate the final BigSeq. Therefore,
we set a temporary index for each event in the current BigSeq
as follows. The temporary indices of events in the current
BigSeq will be i1i2i3i4i5 with i1 << i2 << i3 << i4 << i5.
We can assume the following ij = ij−1 + (j − 1).ϵ with
2 ≤ j ≤ 5 and ϵ ≥ 1. For example, i3 = i2 + 2ϵ After
generating the final BigSeq, we will set the actual value for
each temporary index, ij .

Second, for each remaining sequence S′ in D, compute
the longest common subsequence between S′ and BigSeq,
namely LCS(S′, BigSeq). After that we store the positions
in BigSeq for each event that belong to LCS and store
also the remaining events in S′, that do not belong to
LCS(S′, BigSeq) (Note that these remaining events will be
further inserted in BigSeq). For example, let S′ be the sixth
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sequence, S′ = S6 = CBAC. We have LCS(S′, BigSeq)
= LCS(CBAC,ABCBC) = CBC. The positions of the
three events (C, B, and C) of LCS(S′, BigSeq) in BigSeq
are i3, i4, and i5, respectively. We store these positions.
Also, we store the remaining event, A, in S′ that does
not belong to LCS(S′, BigSeq). This remaining event, A,
will be further inserted in BigSeq. The remaining events
of each remaining sequence must be inserted in the correct
position in the BigSeq. Therefore, we will associate with each
remaining event er a range of positions in BigSeq. We expect
that er will fall within this range in BigSeq. We call this
range an Expected Range of Positions for event er, namely
ERP (er). Recall let S′ = S6 = CBAC then we have only
one remaining event A. The position of the event A in S′

falls between the positions of two events B and C. Note that
these two events (B and C) belong to LCS(S′, BigSeq) and
their positions in BigSeq are i4 and i5. Therefore, we have
ERP (A) =]i4, i5[. As a consequence, we should insert the
remaining event A in BigSeq at a new position between i4
and i5. Table II shows the expected range of positions for
each remaining event er, ERP (er).

Finally, indeed, we do not insert each remaining event
in BigSeq instead of we cluster the remaining events
into compatible event sets. After that we insert only one
represntative event, erep, for each compatible event set
into BigSeq at a specific position p. This position p must
belong to the expected range of positions of every event
in the compatible event set of erep. See next definition of
compatible event set and see next example.

Definition 4.1: Compatiable Event Set.
The event set is called compatible event set if the events in
this set satisfy the next three conditions:

1) They have the same label;
2) They donot belong to the same event sequence;
3) The insertion of their expected range of positions in

BigSeq is not empty.

Example 4.1: Given the event sequence database in
Table I. Table II reports the initial value of BigSeq (S1

[The first row]), the remaining sequences (S2, S3, S4,
S5, S6, S7, S8 [The first column]), the events of each
remaining sequence S′ that belong to LCS(S′, BigSeq) [The
second column], and ERP (er) for any remaining event, er
(er /∈ LCS(S′, BigSeq)) [The third column].

Note that the underlined events in the first and second
columns belong to LCS(S′, BigSeq) and the parameter
δ ≥ 1. To distinguish among the remaining events (er in the
third column of Table II) that have the same label, we assign
superscripts for these events as follows. Akm means the m-th
remaining event in the sequence k.

Now we will determine the compatible sets of remaining
events. The remaining event can be belonged to more than
one compatible event set. In this case, we add this remaining
event to only one compatible event set. From the definition of
compatible event set, If two or more different remaining events

belong to the same event sequence then we must add them to
different sets of compatible events. For example, since the two
different remaining events, A21 and A22 belong to the same
event sequence (the second event sequence, S2), they must be
added to two different sets of comaptiable events. Based on
the definition of compatible event set and ERP (er) in Table
II, we have three compatible sets of remaining events, core =
{core1, core2, core3}, where core1 = {A21, A31, A41, A71},
core2 = {A22, A32, A61, A82}, and core3 = {C81}.

Next we will discuss the computations of these three
compatible sets of remaining events in details and how we
conserve all characteristics of the original event sequence in
the final BigSeq with respect to the event sequence database
and ERP (er) in Tables I and II, respectively.

The first compatible set of remaining events is
core1 = {A21, A31, A41, A71}. Note that all events in
core1 have the same label, A (Condition 1 in Definition
4.1) and they do not belong to the same sequence
but they belong to sequences S2, S3, S4, and S7

respectively (Condition 2 in Definition 4.1). We have
ERP (A21) = [p, p + δ[, where p > i2. Recall, because
i3 > i2, we can set p = i3. Now ERP (A21) = [i3, i3 + δ[.
Recall, δ ≥ 1 then we can set δ = 2. In other words,
ERP (A21) = [i3, i3 + 2[. The other expected range of
positions are ERP (A31) =]i3, i4[, ERP (A41) =]i3, i5[,
and ERP (A71) =]i3, i4[. As the result, we have
ERP (A21) ∩ ERP (A31) ∩ ERP (A41) ∩ ERP (A71) ̸= ϕ
(Condition 3 in Definition 4.1). Thus, we insert
in BigSeq at position i3 + 1 only one event with
label A (erep1) as representative for core1. Note
that we select the position i3 + 1 ̸= i4, since
i3 + 1 ∈ ERP (A21), ERP (A31), ERP (A41), and
ERP (A71).

The second compatible set of remaining events is
core2 = {A22, A32, A61, A82}. Note that core2 satisfy
coditions 1 and 2 in Definition 4.1 since all events in core2
have the same label, A. the events in core2 do not belong to
the same sequence but they belong to sequences S2, S3, S6,
and S8 respectively (Condition 2 in Definition 4.1). We have
ERP (A22) = [p + δ,∞[= [i3 + 2,∞[. The other expected
range of positions are ERP (A32) =]i4, i5[, ERP (A61) =
]i4, i5[, and ERP (A82) = [i4,∞[. As the result, we have
ERP (A22) ∩ ERP (A32) ∩ ERP (A61) ∩ ERP (A82) ̸= ϕ
(Condition 3 in Definition 4.1). We insert in BigSeq at position
i4 + 1 only one event with label A (erep2) as representative
for core2. Note that we select the position i4 + 1 ̸= i5,
since i4 + 1 ∈ ERP (A22), ERP (A32), ERP (A61), and
ERP (A82).

Finally, the third compatible set of remaining events is
core3 = {C81} with ERP (C81) =]i1, i2[. Since core3 has
only one event then it is compatible set that satisfy the three
conditions in Definition 4.1. Thus, we insert the event C in
BigSeq as representative for core3 [erep3] at position between
i1 and i2. In other words, we can insert C in BigSeq at
position i1 + 1 ̸= i2 such that i1 + 1 ∈ ]i1, i2[.
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TABLE II. EXPECTED RANGE OF POSITIONS FOR EACH REMAINING EVENT er , ERP (er)

Initial Value of BigSeq = S1 = ABCBC (the first sequence in D) and its indices are i1i2i3i4i5
S′: Remaining Seq e ∈ LCS(S′, BigSeq) with pos. in BigSeq ERP (er)
S2: ABAA A and B with pos. i1 and i2 ERP (A21) = [p, p+ δ[, p > i2 - ERP (A22) = [p+ δ,∞[
S3: CABAC C, B, and C with pos. i3, i4, and i5 ERP (A31) =]i3, i4[ and ERP (A32) =]i4, i5[
S4: CAC C and C with pos. i3 and i5 ERP (A41)=]i3, i5[
S5: ABCB A, B, C, and B with pos. i1, i2, i3, and i4 NULL
S6: CBAC C, B, and C with pos. i3, i4, and i5 ERP (A61) =]i4, i5[
S7: BCAB B, C, and B with pos. i2, i3, and i4 ERP (A71) =]i3, i4[
S8: ACBBA A, B, and B with pos. i1, i2, and i4 ERP (C81) =]i1, i2[ and ERP (A82) =]i4,∞[

TABLE III. BIGSEQ CONSTRUCTION

Temp. Pos. i1 i2 i3 i4 i5

BigSeq Events A B C B C

(a) Initial BigSeq

Temp. Pos. i1 i1 + 1 i2 i3 i3 + 1 i4 i4 + 1 i5

Actual Pos. 1 2 3 4 5 6 7 8
BigSeq Events A C B C A B A C

(b) Insertion of the Three Representatives of the Three Compatiable
Sets in BigSeq

The initial BigSeq with its indices and the final BigSeq
with its indices are reported at Table III(a) and Table III(b),
respectively. The final BigSeq is ACBCABAC.Note that
we insert the three representative C, A, and A in BigSeq
at position i1 + 1 (between i1 and i2), i3 + 1 (between i3
and i4), and i4 + 1 (between i4 and i5). Here the size of
the final BigSeq is 8 after inserting the three representatives.
Therefore, the actual indices of the events in the final BigSeq
will be from 1 to 8 (i.e. 1, 2, 3, 4, 5, 6, 7, and 8). See the
next definition for the size of the final BigSeq.

Definition 4.2: The Final BigSeq Size.

The Final BigSeq Size is |final BigSeq| =
|initial BigSeq| + |core|, where |core| is the count of
compatible sets of remaining events, where initial BigSeq
is the initial value of BigSeq.

For example, with respect to the event sequence database
and the data in Tables I and II respectively, we have the
following |final BigSeq| = |initial BigSeq| + |core| =
|S1| + |core| = 5 + 3 = 8.

From definition 4.2, to reduce the final BigSeq Size, we
should reduce the count of compatible sets of the remaining
events as much as possible.

To conserve all characteristics of the original event se-
quence in the final BigSeq, we should associate with each
event e in BigSeq a list of sequence ids that contains the
event e, namely e.id list as follows. First, since we select
the first sequence as the initial value for BigSeq, we will

TABLE IV. STEPS OF BIGSEQ CONSTRUCTION WITH SEQUENCE ID LIST

Pos. i1 i2 i3 i4 i5
BigSeq Events A B C B C

Seq. Id List 1 1 1 1 1
(a) Initial BigSeq with Id List of the First Sequence

Pos. i1 i2 i3 i4 i5
BigSeq Events A B C B C

Seq. Id List 1 1 1 1 1
2 2 3 3 3
5 5 4 5 4
8 7 5 6 6

8 6 7
7 8

(b) Addition of Id List for each Event e ∈ GCD(S′, BigSeq)

Temp. Pos. i1 i1 + 1 i2 i3 i3 + 1 i4 i4 + 1 i5

Actual Pos. 1 2 3 4 5 6 7 8
BigSeq Events A C B C A B A C

Seq. Id List 1 8 1 1 2 1 2 1
2 2 3 3 3 3 3
5 5 4 4 5 6 4
8 7 5 7 6 8 6

8 6 7
7 8

(c) Insertion of the Three Representatives for the Three Compatible
Sets in BigSeq with their Id List

add 1 (the id of the first sequence) to e.id list for each
event e ∈ initial BigSeq = S1 [see Table IV (a)]. Second,
suppose the case that the event e ∈ LCS(S′, BigSeq), where
S′ is a remaining sequence (i.e. e ∈ S′ and e ∈ BigSeq).
In this case, we add the id of S′ to e.id list for each
event e ∈ BigSeq [see Table IV (b)]. Finally, we have
three representative events for the three compatible sets of
remaining events. As we mentioned before, we inserted the
three representatives, A, A, and C in BigSeq at positions i3+1,
i4 + 1, and i1 + 1 respectively to generate the final BigSeq.
For each representative event, erep, for the compatible set of
remaining events, corek, we add to erep.id list the id of the
event sequence that contains the remaining event er, for every
er ∈ corek with k = 1, 2, and, 3 [see Table IV (c)].

Next algorithm outlines the BigSeq construction with se-
quence Id List.
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TABLE V. BIGSEQ WITH BIT-VECTORS

Pos. 1 2 3 4 5 6 7 8
e ∈ BigSeq A C B C A B A C

B(e) = {B1} {10010011} {10000000} {11010011} {01111101} {01001110} {11110101} {10100110} {00101101}

Algorithm: BigSeq Construction with Sequence Id List

Input: Event sequence database, D
Output: BigSeq with e.id list for each event e ∈ BigSeq.

1. Select an event sequence S ∈ D as BigSeq
// Initial value of BigSeq = S

2. Add the id of S to e.id list for each e ∈ BigSeq
3. D = D − S
4. ERP = {}

//the set of expected range of positions
5. for each event sequence S′ ∈ D do
6. lcs = LCS(S′, BigSeq)
7. for each event e ∈ lcs do // e ∈ S′ and e ∈ BigSeq
8. Add the id of the sequence S′ that contains

the event e to e.id list in BigSeq
9. end for
10. for each event er ∈ S′ and er /∈ lcs do

//er is remaining event
11. Compute ERP (er)
12. ERP = ERP ∪ ERP (er)
13. end for
14. end for
15. Find the compatible sets of remaining events, core,

based on Definition 4.1 and ERP
16. for each compatible set corek ∈ core
17. Insert the representative event, erep, for corek into

BigSeq at position p ∈ ERP (e′) ∀ e′ ∈ corek
18. Add to erep.id list the id of the event sequence that

contains the remaining event er ∀ er ∈ corek
19. end for
20. return BigSeq // The final BigSeq with e.id list

for each event e ∈ BigSeq

V. COMPRESSING EVENTS SEQUENCES DATABASE USING
BigSeq METHOD

The objective of this paper is to compress the event
sequence database in efficient way such that we conserve
all characteristics of the original database. In other words,
we will compress the event sequence database into compact
BigSeq with sequence id lists. But when the size of event
sequence database is large, the id list size of each event in
the corresponding BigSeq will be large. To confine the larger
size of these id lists, we can represent e.id list of each event
e ∈ BigSeq as a set of bit-vectors, B(e) = {B1, B2, ..., Bm},
where each Bi is 8 length bit-vector (i.e. each Bi occupy 1 byte
in memory) and suppose that the maximum id ∈ e.id list is n
then m = |B(e)| = n/8. Each position in each Bi corresponds
to event sequence Sid ∈ D where id ∈ [8× (i− 1)+ 1, 8× i].
The bit at position j in Bi represents the presence or absence
of the event e ∈ BigSeq in the event sequence S8×(i−1)+j .
See next example.

Example 5.1: The first event in BigSeq (in Table V) is
e1 = A with the set of bit-vectors B(e1) = {B1} =
{10010011}. Note that B(e1) contains only one bit-vector,
B1, since the maximum id in e1.id list = 8 (i.e. n = 8), thus
m = n/8 = 1 = |B(e)|. The bits in B1 represent the presence
or absence of the event e1 in the event sequences that have
id ∈ [1, 8]. The bit at position 1 in B1 is one, this means
that e1 ∈ S1 = S8×(1−1)+1 , etc. Given the final BigSeq
with id lists in Table IV(c), its corresponding BigSeq with
bit-vectors is reported in Table V.

A. Compression Benefit

Suppose each event e occupy 1 byte in memory, then the
size (in terms of bytes) of the original event sequence database,
D (in Table I) is 34 bytes (D contains 34 events). Recall
each Bi occupy also 1 byte in memory, therefore the size
(in terms of bytes) of the BigSeq with bit-vectors (in Table
V) is |BigSeq| + |B(e)| = 8 + 8 = 16 bytes. We can use the
compression ratio to measure how well the data is compressed.
The compression ratio calculated by dividing the data size
before compression with the size after compression. In the
above example, the compression ratio is 34/16 = 2.125. In
other words, the space saving (%) is (1 - (compressed size /
uncompressed size)) × 100 = 1 − (16/34) × 100 = 52.9%.
Here, we have an optimization that based on the observation
that there are many consecutive zeros in each row of the bit-
vectors. This is clearly grossly inefficient. Therefore, we can
compress these consecutive zeros in efficient way as follows.
Given array of bits (0 and 1), Bit Arr, and paramter n. The
output is the same as the input except for consecutive zeros.
Note that, may be there are many sets of consecutive zeros
in Bit Arr. For each set of consecutive zeros, CZ, we do the
following. If |CZ| ≤ n + 2, we do nothing. Otherwise, we
compress CZ into compressed CZ with size n+2 bits. The first
and the second bits in the compressed CZ are 0 (indicator for
compressing CZ) and 1 (indicator for doing the compression)
respectively. The other n bits in the compressed CZ indicate
how many times of zeros were repeated consecutively.

In the experimental results section, we will show the better
compression ratio of BigSeq method against the state-of-art
algorithm, GoKrimp, on many real datasets.

VI. EXPERIMENTAL EVALUATION

This section reportes the results of experiments on many
real dataset. We compare the performance of Our proposed
method, namely BigSeq with GoKrimp algorithm [8] [9]. Here,
we exclude the two algorithms SeqKrimp and SQS from this
experiment since GoKrimp algorithm outperforms them by one
to two orders of magnitude. BigSeq is implemented in standard
C++ with STL library support and compiled with GNU GCC.
Experiments were run on laptop with Intel i3 2.4 GHz and 8G
memory running Linux.
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A. Datasets

Experimental evaluation are performed on a group of real
datasets as follows. We used five real datasets namely, msnbc
[10], Gene [16], TCAS [17] [4], Activity [1], and JBoss
[5]. The corresponding information of these real datasets is
summarized in Table VI, where |D| represents the number of
sequences, |E| is the number of the events, min L, max L
and avg L denote the minimum length, maximum length and
average length of the sequences respectively.

TABLE VI. SUMMARY STATISTICS OF THE REAL DATASETS USED IN THE
EXPERIMENTS

Dataset |D| |E| min L max L avg L
msnbc 31790 18 9 100 13.33
Gene 2942 5 41 216 86.53
TCAS 1578 75 8 70 36

Activity 35 10 12 43 21.14
JBoss 28 64 51 125 91

B. Effect of Optimization

In this experiment, we show the effect of optimization of
compressing the consecutive zeros, namely Opt, with respect
to the compression ratio. Table VII reports the compression
ratio of BigSeq with and without Opt on the three datasets
(Gene, TCAS, and JBoss). From this table, BigSeq with Opt
has the better compression ratio in all datasets. Note that the
larger compression ratio is the better compression we have.

TABLE VII. EFFECT OF OPTIMIZATION WITH RESPECT TO COMPRESSION
RATIO

Dataset BigSeq with Opt BigSeq without Opt
Gene 2.428 1.348
TCAS 3.384 1.585
JBoss 3.303 2.700

C. Performance of BigSeq against GoKrimp

From the previous experiment, BigSeq with Opt has the
best performance with respect to compression ratio. Therefore,
in this experiment, we will use BigSeq with Opt and we will
call it as BigSeq for abbreviation.

The proposed method, BigSeq is evaluated according to the
following criteria:

• Compression Ratio: To measure how well the dataset
is compressed using BigSeq.

• Total Response Time: To measure the efficiency of
BigSeq.

• The Number of Patterns: The number of detected
patterns that used for compression.

1) Compression Ratio: Table VIII reports the compression
ratio of the two algorithms on the five datasets. Recall, the
larger compression ratio is the better compression we have.
The BigSeq algorithm shows a better compression ratio in all
datasets. For example, in Gene dataset, the compression ratio
of BigSeq is 2.428 while the compression ratio of GoKrimp
is 1.251.

TABLE VIII. COMPRESSION RATIO OF THE TWO ALGORITHMS (BIGSEQ
AND GOKRIMP)

Dataset BigSeq GoKrimp
msnbc 1.648 1.123
Gene 2.428 1.251
TCAS 3.384 2.951

Activity 1.520 1.077
JBoss 3.303 1.541

2) Total Response Time (Sec): Table IX reports total re-
sponse time (Sec) of the two algorithms on the five datasets.
The BigSeq algorithm has the best execution time on all
datasets. On msnbc dataset, Gene dataset, TCAS dataset, Ac-
tivity dataset, and JBoss dataset, BigSeq outperforms GoKrimp
by more than two orders of magnitude, more than one order
of magnitude, more than three orders of magnitude, approx-
imately three factors, and more than one order of magnitude
respectively.

TABLE IX. TOTAL RESPONSE TIME (SEC) OF THE TWO ALGORITHMS
(BIGSEQ AND GOKRIMP)

Dataset BigSeq GoKrimp
msnbc 1.32 313
Gene 1.1 45.2
TCAS 0.135 199

Activity 0.066 0.239
JBoss 0.072 2

3) Number of Patterns: Table X reports the number of
patterns that used for compression by the two algorithms on
the five datasets. Note that BigSeq used only one pattern for
all datasets. This pattern is the compact BigSeq itself.

TABLE X. THE NUMBER OF PATTERNS OF THE TWO ALGORITHMS
(BIGSEQ AND GOKRIMP)

Dataset BigSeq GoKrimp
msnbc 1 27
Gene 1 6
TCAS 1 33

Activity 1 2
JBoss 1 5

VII. CONCLUSION

In this paper, we focus on summarizing the event se-
quence dataset. Existing methods summarize the event se-
quence dataset by mining a significant patterns that compress
the dataset well. In contrast, the novel proposed method,
BigSeq summarizes the event sequence dataset by merging the
event sequences into compact big sequence. The construction
of the compact big sequence is done via the longest common
subsequence and the novel definition of the compatible event
set. Our compact big sequence converses the all characteristics
of the original event sequences. Experimental results show that
BigSeq method can achieve better performance than the state-
of-the-art methods such as GoKrimp in terms of compression
ratio, total response time, and number of detected patterns.
As future work, we plan to adapt the BigSeq method for
mining the frequent, closed, and maximal patterns in the event
sequence dataset.
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[9] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining compressing
sequential patterns. Statistical Analysis and Data Mining, 7(1):34-52,
2014.

[10] http://www.msnbc.com
[11] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.

Dayal, M.-C. Hsu. Mining sequential patterns by pattern-growth: The
prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11) 1424-1440,
2004.

[12] J. Rissanen, Modeling by shortest data description, Automatica,
14(1):465-471, 1978.

[13] J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets
that compress. Data Min. Knowl. Disc., 23(1):169-214, 2011.

[14] J. Wang and J. Han. BIDE: efficient mining of frequent closed sequences
In ICDE, 2004.

[15] K. Gouda, M. Hassaan, and M. J. Zaki. Prism: An effective approach for
frequent sequence mining via prime-block encoding. Journal of Computer
and System Sciences 76:88-102, 2010.

[16] L. Wei, M. Liao, Y. Gao, R. Ji, Z. He, and Q. Zou. Improved and
promising identification of human micrornas by incorporating a high-
quality negative set IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 11(1) 192-201, 2014.

[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In ICSE, 1994.

[18] N. Tatti and J. Vreeken. The long and the short of it: Summarizing
event sequences with serial episodes. In KDD, 462-470. ACM, 2012.

[19] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas. Fast
vertical mining of sequential patterns using co-occurrence information.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 40-52, 2014.

[20] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. VMSP:
Efficient Vertical Mining of Maximal Sequential Patterns. Proc. 27th
Canadian Conference on Artificial Intelligence (AI), Springer, LNAI, pp.
83-94, 2014.

[21] P. Grünwald, The Minimum Description Length Principle, MIT Press,
2007.

[22] T. Makhalova, S. O. Kuznetsov, and A. Napoli Mint: MDL-based
approach for Mining INTeresting Numerical Pattern Sets. Data Mining
and Knowledge Discovery 36:108-145, 2022.

[23] Y. Li, S. Zhang, L. Guo, J. Liu, Y. Wu, X. Wu. NetNMSP: Nonoverlap-
ping maximal sequential pattern mining. Applied Intelligence, 52:9861-
9884, 2022.

[24] Y. Wua, C. Zhu, Y. Li, L. Guo, X. Wue. NetNCSP: Nonoverlapping
closed sequential pattern mining. Knowledge-Based Systems 196, 2020.

www.ijacsa.thesai.org 797 | P a g e


